skip to main content


Search for: All records

Creators/Authors contains: "Carroll, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Glass, Jennifer B. (Ed.)
    ABSTRACT Standard methods for calculating microbial growth rates (μ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus . We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating the growth of light-synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with those of the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with the percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of a relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. IMPORTANCE Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are important because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages mean that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean. 
    more » « less
  2. Abstract

    Estuaries emit a large but highly uncertain amount of Nitrous oxide (N2O) into the atmosphere. To better understand N2O cycling processes in estuaries, we provide the first direct observations of N2O consumption in the seasonally anoxic Chesapeake Bay, the largest estuary in the United States. N2O consumption rates in anoxic waters reached up to 3.3 nmol L−1 d−1but were generally undetectable in oxygenated waters. However, N2O consumption rates were substantially enhanced when the oxygen concentration was experimentally decreased in initially oxygenated samples, indicating the potential of N2O consumption in oxygenated environments, for example, surface waters. These potential N2O consumption rates followed Michaelis‐Menten kinetics as a function of increasing N2O substrate concentration. N2O‐consuming microbes that predominantly contained the clade II nitrous oxide reductase gene were detected throughout the water column. These new observations of environmental controls on N2O consumption will benefit the modeling of N2O cycling and help to constrain the estuarine N2O flux.

     
    more » « less